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Outline

● Why do we want to make FFAGs?

● Tune and resonance: how they drive FFAG design.

● Time of flight: how it impacts FFAG design.
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Accelerator Basics
● Guide particles around a more

or less circular path

● Ask what the particle distribu-
tion looks like in a given plane
in space
◆ Position in plane
◆ Momentum in the plane
◆ Energy
◆ Time

● Particles guided by magnets

● Electric fields (time varying) in-
crease particles’ energy
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FFAG: Fixed Field
The Synchrotron

● You want to increase the energy of some charged particles
◆ Ignore how the increase occurs for now

● Lorentz force equation, magnetic fields only

dp

dt
= qv × B

● Rewrite as (s is arc length along trajectory)

d

ds

(

p

|p|

)

=
p

|p|
×

(

qB

|p|

)

● If B is raised in proportion to the magnitude of the momentum
|p|, orbit follows the same path in space regardless of energy
◆ Time along trajectory varies with velocity magnitude

● Synchrotron: increase B in proportion to |p| as you accelerate
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FFAG: Fixed Field
The Synchrotron: Ramping Rate

● Changing magnetic fields induce currents in the coils and other
conductors (beam pipe)
◆ These currents produce fields that misdirect the beam
◆ Currents larger if rate of main field change higher

● Magnets have substantial stored energy
◆ Power supply must not only supply steady-state current, must

additionally supply increase in stored energy

● Limits number of acceleration cycles per second
◆ Practical maximum around 50 Hz
◆ If you want high fields with superconducting magnets, forced to

minutes or hours per acceleration cycle
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FFAG: Fixed Field

● If you want a higher repetition rate, you must keep the magnetic
fields fixed

● Trajectories no longer independent of energy
◆ Particles at different energies follow different paths
◆ Dynamics (stability!) depend on energy (more on this later)
◆ Larger magnet apertures required: cost

● Cost savings occur
◆ No longer supply power to rapidly increase stored energy
◆ Superconducting magnets possible for high repetition rate

machines

● FFAGs can be better than synchrotrons when you need to
accelerate particles rapidly
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FFAG: Alternating Gradient
Weak Focusing

● Start with a circular orbit in a constant magnetic field

● Consider a particle next to that orbit
◆ It follows a circular orbit of the same radius
◆ The particle oscillates about the original orbit
◆ This is called “weak focusing”

● Orbit radius is proportional to the momentum magnitude

● Vertical orbit stability requires reducing the field with radius
◆ Orbits at different energies spread even further apart

● Large apertures required for large energy range

● This is the focusing method for many cyclotrons (which are fixed
field machines)
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FFAG: Alternating Gradient
Weak Focusing
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FFAG: Alternating Gradient
Add a Field Gradient

● If field increases with radius, orbits will be more tightly packed
together

● Example: cylindrical coordinates, field proportional to rk, but
uniform in θ

Bz = B0

(

r

r0

)k
r = r0

(

p

p0

)
1

k+1
∆r ≈

1
k + 1

r0
∆p

p0

● Larger field gradient, orbits more tightly packed together
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FFAG: Alternating Gradient
Vertical Stability

● The catch: Maxwell’s equations

dBz

dr
=

dBr

dz
● If Bz increases with r to pack orbits more compactly

◆ Br increases with z

◆ Particle displaced vertically up feels an upward force
◆ Motion is unstable

● To get vertical stability, need dBr/dz < 0
◆ For a small amount, orbits are spread further apart
◆ For a larger amount, horizontal motion is unstable
◆ I’m lying a little bit (spiral angle), but the general trends of the

argument are correct. . .
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FFAG: Alternating Gradient
Thin Lens Example

● Two lenses, one is focusing, the other is defocusing

● Separated by L, focal lengths f and −f

● Combination has focal length f2/L

● Focal length positive: combination focuses
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FFAG: Alternating Gradient
Alternating Gradient Focusing

● Same trick with accelerator magnets
◆ Alternate magnets with dBz/dr > 0 and dBz/dr < 0
◆ Combination gives orbit stability in both planes
◆ Also keeps orbits with different energies packed closely

● FFAGs achieve smaller apertures then cyclotrons by using
alternating gradient focusing
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Summary: Motivations for FFAG Use

● FFAGs are useful and even necessary when you need rapid
acceleration

● FFAGs allow one to have a wide range of energies in a machine
yet (relatively) small magnet apertures (when compared to a
weak focusing machine)

● There are more which we’ll get to a bit later. . .
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FFAG Applications

● Applications that require rapid acceleration
● High power beams hitting targets want high repetition rate

◆ Need high average beam power
◆ Target can only handle so much energy per pulse
◆ Space charge (forces of beam particles on each other) limits

current one can accelerate

● Medical applications
● Muon machines (decay!)
● Machines requiring large energy spread but no acceleration

◆ PRISM (captures large energy spread muon bunch)
◆ Boron neutron capture therapy: production target increases

beam energy spread
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FFAG Applications
Boron Neutrino Capture Therapy
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Accelerator Concepts
Closed Orbit

● For a given particle energy

● Particle starts in the plane (Ponicaré Surface) described before

● Arrives back at the same plane one turn later

● Find a particle trajectory which returns to the plane with the same
◆ Position
◆ Transverse momentum

● This is called the closed orbit

● If no such orbit exists, the accelerator probably won’t work

● There is an amount of time that it takes a particle following the
closed orbit to come back to the plane
◆ Analyzed later
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Accelerator Concepts
Poincar é Surface
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Accelerator Concepts
Small Deviations from Closed Orbit

● Analyze small deviations about the closed orbit

● Deviations at plane in terms of deviations at plane one turn earlier

● Can be linearized

z1 = Mz0

◆ z0 vector of phase space variables at plane
◆ z1 phase space variables one turn later
◆ M linear transfer matrix

18



Accelerator Concepts
Eigenvalues

● Matrix M has eigenvalues
◆ If λ is an eigenvalue, so is λ−1

◆ If λ is an eigenvalue, so is λ∗

● Two-dimensional phase space
◆ Two possible types of solution

★ λ real, λ and λ−1

➣ Either |λ| > 1 or |λ−1| > 1
➣ Motion is unstable

★ λ = e−iµ

➣ |λ| = 1
➣ Motion is stable

◆ Tr M characterizes stability
★ |Tr M | 6 2 for stable motion

Im{λ}

Re{λ}
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Accelerator Concepts
Stable Motion

● Near the closed orbit, stable motion means particles move on
ellipses in “phase space”
◆ One dimensional motion: coordinate and its conjugate

momentum

● Transform to “normalized variables” so that motion is on a circle
◆ Useful way to view phase space
◆ Define tune to be µ/2π, where µ is the angle a particle move on

the circle for one turn
◆ Eigenvalue is e±iµ, Tr M = 2 cos µ

● Tunes indicate stability
◆ Near 0.5 or 0 potentially leads to instability
◆ Trace of matrix approaching -2 and 2 respectively
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Accelerator Concepts
Phase Space Elliptical Motion
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Accelerator Concepts
Normalized Phase Space
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Accelerator Concepts
Tune Variation with Energy: Chromaticity

● The tune depends on the
energy

● Reason: angular de-
viations by magnet in-
versely proportional to
momentum

● Plot
◆ Each color a different

energy
◆ Each energy normal-
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Symmetry of the Ring
Single Cell

● Imagine the ring is a sequence of many short, identical cells

● Behavior for one cell tells us what occurs for the entire ring

● Plot tune and trace as a function of energy for the single cell
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Symmetry of the Ring
Tune for a Single Cell
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Symmetry of the Ring
Trace of the Linear Map for a Single Cell
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Symmetry of the Ring
Two Cells

● Examine Dynamics of Two Cells

● Two Identical Cells
◆ Dynamics determined by single cell behavior
◆ Tune simply double the single cell tune
◆ Trace just touches -2.0, but doesn’t cross

★ Motion would be unstable if it crossed -2.0

● Two slightly different cells
◆ Each close to the single cell
◆ Trace now crosses -2.0

★ Motion unstable between 13.5 GeV and 15.3 GeV

● These are called linear resonances
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Symmetry of the Ring
Tune for Two Identical Cells
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Symmetry of the Ring
Trace of Linear Map for Two Identical Cells
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Symmetry of the Ring
Trace of Linear Map for Two Different Cells
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Symmetry of the Ring
Trace of Linear Map for Two Different Cells
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Symmetry of the Ring
Accelerating Through Resonances

● Accelerating through resonances will cause the beam to blow up.

● If cells identical, same before and after in normalized phase
space

● If cells different, beam gets larger in normalized phase space

● Effect is stronger if you accelerate more slowly
◆ More time spent in unstable state
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Symmetry of the Ring
Accelerating in Two Identical Cells
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Symmetry of the Ring
Accelerating in Two Different Cells
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Symmetry of the Ring
Accelerating at Different Rates
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Symmetry of the Ring
More Cells

● Instead of two cells, do more cells

● If cells identical, trace touches -2 and 2 in more places for more
cells
◆ These are places where, when the symmetry is broken, things

could go unstable

● Most rings have little symmetry
◆ Detector, injection/extraction, etc.
◆ Regions between trace crossing ±2 are small
◆ This is the first reason why most machines can only transmit a

small momentum range with fixed fields
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Symmetry of the Ring
Trace for Many Cells
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Symmetry of the Ring
Results for FFAGs

● These results have an impact on FFAG design

● (Non-scaling) FFAGs should consist entirely of short, identical
cells
◆ This will prevent the linear resonances from causing (too much)

instability
◆ Magnetic fields and magnet placement must be very precise

● Accelerate rapidly to minimize the impact of the unavoidable
errors
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Nonlinearities

● Discussion thus far assumed that a linear map about the closed
orbit was an exact representation of the motion

● Real machines have higher order terms about the closed orbit
● Some terms are unavoidable

◆ Terms due to the beam not making small angles
◆ Terms coming from the curvature of the ring
◆ Terms coming about because fields change from their values in

the magnets to zero outside the magnets (Maxwell’s equations)
◆ Space charge (forces of particles on each other)

● Sometimes nonlinearities are intentionally introduced
◆ Reduce tune variation
◆ Control time of flight (more later)
◆ Control collective effects
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Accelerator Concepts
Tune Shift with Amplitude

● Nonlinearity leads to a tune that depends on the distance from
the closed orbit

● Even if the tune at the closed orbit is OK, tune may be “bad” at
some distance from the closed orbit
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Accelerator Concepts
Tune Shift with Amplitude
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Accelerator Concepts
Nonlinear Resonances

● Single cell example

● At small amplitudes, motion is like linear

● At larger amplitudes motion develops a three-fold symmetry
◆ This is a sign that the tune is approaching 1/3

● At large enough amplitude
◆ Tune becomes exactly 1/3
◆ Motion becomes unstable

● Resonant phenomenon, similar to linear resonances above
◆ Happens at nonzero amplitude, however
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Accelerator Concepts
Nonlinear Resonance
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Accelerator Concepts
Nonlinear Resonances: Energy Variation

● As energy changes, zero-amplitude (linear) tune approaches 1/3

● Amplitude where tune becomes 1/3 and particles are lost
becomes lower

● Smaller phase space area is transmitted

● When linear tune reaches 1/3, transmitted area can be zero
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Accelerator Concepts
Nonlinear Resonances: Energy Variation
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Accelerator Concepts
Nonlinear Resonances: Energy Variation
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Accelerator Concepts
Nonlinear Resonances: Energy Variation

● With linear resonances, needed to avoid 2νx = k, for k integer.

● Including nonlinear resonances means we avoid mνx = k for any
m and k

◆ Infinite number of these
★ Driving terms may be zero or weak for many of these
★ Lower-order (m) resonances tend to be stronger
★ Must face these even with perfect single-cell symmetry

◆ Energy space even more restricted than when considering
linear resonances

◆ This further restricts energy acceptance of real machines

● Because of two transverse planes, really deal with
mxνx + myνy = k
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Accelerator Concepts
Accelerating Through Nonlinear Resonances

● Accelerate through nonlinear resonance

● Increase in beam size if we accelerate through rapidly

● Accelerate through more slowly
◆ Further increase in beam size
◆ Particle loss (12%, this example)

● Increase the resonance strength
◆ Beam looks smaller
◆ That’s because large amplitude particles were lost (58%!)
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Accelerator Concepts
Accelerating Through Nonlinear Resonance
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Accelerator Concepts
Accelerating Through Resonance More Slowly
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Accelerator Concepts
Stronger Resonance
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Summary: Constraints Imposed on FFAG Design by
Resonances

● To achieve wide energy range, FFAGs must avoid resonances

● To avoid resonances, FFAGs should be constructed as
◆ Simple cells
◆ All identical
◆ Minimize differences due to errors

● Nonlinearities should be minimized to avoid driving nonlinear
resonances
◆ Must accelerate rapidly through any residual nonlinear

resonances
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FFAG Research Areas

● Much FFAG research involves trying to push on these constraints
● Breaking symmetry

◆ Short cells keep apertures small, have other benefits
◆ Long cells needed to hold RF cavities (accelerate particles)
◆ Would like to combine both in one machine
◆ Must transition between the two gently. . .

● Adding nonlinearities
◆ Nonlinearities are desirable for various reasons

★ Control time of flight (more later)
★ Decrease tune variation with energy

➣ Avoid space charge driven resonances
➣ Reduce time of flight variation with transverse amplitude

◆ Try to add nonlinearity while transmitting large enough beam
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Breaking FFAG Symmetry
Racetrack-shaped FFAG
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The Scaling FFAG

● If one could avoid tune variation, resonances might not be a
problem

● The first FFAG designers (1950s!) realized this, and had a
solution

● If field in cylindrical coordinates is B(r, θ, 0) = B0(θ)r
k, tune is

independent of energy

● These are currently being built (Japan)

● Why not just use these
◆ Apertures larger than non-scaling FFAGs (cost)

★ Bend is in the wrong magnet
◆ Time of flight (coming up)
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Scaling FFAGs
FFAG at KURRI
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Accelerator Concepts
RF Acceleration

● Acceleration occurs using RF cavities

● Accelerating field varies sinusoidally with time

● To be accelerated, particles must arrive at the cavity at the right
time (positive field)
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Accelerator Concepts
Sinusoidal RF

RF Voltage

Time
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Time of Flight Depends on Energy

● Time of flight depends on energy
◆ Especially important for large energy range in FFAGs

● Particle velocity varies with energy
◆ Important when particles aren’t too relativistic

● Length of closed orbit varies with energy
◆ Becomes important for highly relativistic particles

● If keep RF frequency constant, eventually will no longer
accelerate
◆ Particle returns to same RF phase for one energy only
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Time of Flight Depends on Energy
Methods for Handling

● Vary RF frequency

● Fix RF frequency, accelerate rapidly

● Harmonic number jump
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Time of Flight Depends on Energy
Vary RF Frequency

● Change RF frequency as you accelerate
● Time of flight at each energy is a given number of RF periods
● Problem: making a cavity vary its frequency fast enough

◆ High-frequency, high gradient cavities cannot vary their
frequency fast enough

◆ Low-frequency cavities have lower gradients
★ Limits acceleration rate

◆ Higher gradient and faster frequency variation both increase
loss in cavity
★ Cooling to extract heat ends up making losses worse

◆ Important R&D area for FFAGs

● This is what most current FFAGs do
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Time of Flight Depends on Energy
Vary RF Frequency

62



Time of Flight Depends on Energy
Fix RF Frequency, Accelerate Rapidly

● If we accelerate rapidly enough, we won’t get too far off the RF
crest

● Requires design of an FFAG which where the time of flight range
is small compared to the RF period
◆ Use low-frequency RF

★ Difficult to get high gradients for rapid acceleration
◆ Keep time-of-flight range in FFAG small

★ Impacts overall FFAG design
★ Only works for fairly relativistic FFAGs: otherwise, velocity

variation with energy dominates
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Fix RF Frequency, Accelerate Rapidly
Scaling and Non-Too-Relativistic FFAGs

● Time of flight varies monotonically with energy
● Synchronize RF to time of flight near the central energy
● Acceleration process

◆ Start on one side of crest
◆ Time of flight too long, move toward crest and cross
◆ Reach energy where time synchronized
◆ Time of flight gets too short, move across crest in other

direction

● Applications
◆ Frequency required too low for not-too-relativistic situations
◆ Scaling FFAGs: interesting for muon acceleration (very rapid)

★ Requires rather low frequency RF: low gradient
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Fix RF Frequency, Accelerate Rapidly
Monotonic Time of Flight

Time of Flight

Energy
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Fix RF Frequency, Accelerate Rapidly
Acceleration with Monotonic Time of Flight
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Fix RF Frequency, Accelerate Rapidly
Non-Scaling FFAGs

● Advantage of non-scaling FFAGs: can make derivative of time of
flight zero at some energy for relativistic energies

● This minimizes the drift off of the RF crest

● Allows for the use of higher frequency RF

● Don’t need as much RF as for scaling FFAGs

● Plus: cross crest three times instead of twice

● Some non-scaling FFAG designs make time of flight nearly
constant
◆ Requires large nonlinearities
◆ Leads to problems with beam size transmitted, at least for

muon applications
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Non-Scaling FFAGs
Time of Flight
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Non-Scaling FFAGs
Dynamics in Phase Space
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Fix RF Frequency, Accelerate Rapidly
Time of Flight Dependence on Transverse Amplitude

● Time of flight depends on transverse amplitude
● Reason: finite angles give longer geometrical path

● Low amplitude particles synchronized to RF, high amplitude aren’t
● Problem especially for muon machines with large transverse

beam sizes
● Potential fixes (important research area!)

◆ Add nonlinearities to correct this
★ Potentially reduces beam size transmitted!

◆ Modified RF (higher harmonic)
◆ Add RF voltage, increasing cost
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Harmonic Number Jump

● RF frequency stays constant

● On each turn, the number of RF periods changes by 1 as the
energy changes

● Must carefully control the energy gain on each turn
◆ If energy gain per turn were linear, no problem; but it isn’t
◆ Need to vary energy gain with energy

★ Can’t change RF: too fast
★ Cavity’s energy gain could vary with position
★ Various RF manipulation tricks can be tried
★ Research area
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Time of Flight Depends on Energy
Harmonic Number Jump
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Relativistic Cyclotrons

● Cyclotrons have an energy-independent circulation period
◆ Avoids RF synchronization problems!

● At low (non-relativistic) energies field is constant (B0)
● To achieve relativistic energies, the field looks like

B(r) =
B0

√

√

√

√1 −

(

qB0cr

mc2

)2

◆ B(r) → ∞ at finite r

● Gradients get very large as energies become higher
◆ Particles lose focusing vertically

● For applications suggesting cyclotrons but needing relativistic
energies: consider FFAGs
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Final Summary

● FFAGs are useful when rapid acceleration is needed

● The have advantages over cyclotrons because
◆ They can have smaller apertures
◆ They can more easily reach relativistic energies

● FFAGs must be carefully designed to avoid problems with
resonances
◆ These resonances prevent ordinary accelerators from having

large energy spreads

● FFAGs must somehow deal with the fact that circulation time of
the beam depends on energy
◆ We have several methods for dealing with this
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